Probing the structure of neutron-rich N=12-16 F, O and Ne isotopes using deep-inelastic collisions

- the proposal
- set-up PRISMA-CLARA
- details about our experiment

(28th beam prep.) 29th Nov - 3rd Dec (finishing 4th morning)
LNL Legnaro (Pd)
Aim of the project:
Population of n-rich Ne, F and O nuclei

Information on reaction dynamics in light nuclei using MNT and deep-inelastic reactions

Gamma spectroscopy of n-rich
• O isotopes
• F isotopes
• Ne isotopes
binary reactions with the mass of the products in a narrow distribution around the projectile and target masses

DIC
energies well above the Coulomb barrier. Most of the beam energy is absorbed in the process, the reaction products emerge with low kinetic energy

QE- Multi Nucleon Transfer
energies around the Coulomb barrier. Population of Multiparticle-Multihole states with limited excitation energy and therefore limited particle evaporation

Oxygen isotopes

Experimental info for N = 12 and 14

Need to firmly establish these transitions
VAMOS+EXOGAM exp:

$^{24}\text{Ne} @ 7.923 \text{ MeV/A} + ^{208}\text{Pb} (10.9 \text{ mg/cm}^2)$

$^{24}\text{Ne}^5+ , I_{\text{beam}} \sim 1.5 \times 10^5 \text{ pps}$

Neon isotopes

Oxygen isotopes

<table>
<thead>
<tr>
<th></th>
<th>Counts</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1.416×10^5</td>
<td>100</td>
</tr>
<tr>
<td>Neon</td>
<td>1.377×10^5</td>
<td>97.2</td>
</tr>
<tr>
<td>Fluorin</td>
<td>2101</td>
<td>1.5</td>
</tr>
<tr>
<td>Oxygen</td>
<td>664</td>
<td>0.47</td>
</tr>
</tbody>
</table>

$2^+ \rightarrow 0^+ \ ^{20}\text{O}$

1.6 MeV

-2p-2n
CLARA-PRISMA setup

Angular range
- 30° +130°

$\Delta \Omega = 80$ msr
$\Delta Z/Z \approx 1/60$
(Measured)
$\Delta A/A \approx 1/190$
(Measured)
Energy acceptance
$\pm 20\%$
$B_\rho = 1.2$ T.m
CLARA: CLOVER ARRAY at PRISMA

Composite HPGe detectors CLOVER:
• 4 crystals
• 1 BGO shield (AC)
• 1 criostat

Beam-out

3 signals from each crystal:
• Energy (ADC 4MeV)
• Energy (ADC 20MeV)
• Time

24 to 25 Clovers setup
Efficiency ~ 3 %
Peak/Total ~ 50 %
Position $\theta = 104^\circ-156^\circ$
FWHM ~ 10 keV for $E_\gamma = 1.3$MeV at $\nu/c = 10 %$

“in-beam” γ-ray spectroscopy
CLARA-PRISMA setup

Start detector

Quadrupole

Dipole

MWPPAC

IC

E-ΔE

X-Y, time

6m (TOF)
Optical Elements

- **Quadrupole**: a singlet, focuses vertically the ions towards the dispersion plane.

- **Dipole**: bends horizontally the ions with respect to their magnetic rigidity ($B\rho$).
PRISMA Detectors

- **Entrance Position**
 - position \(x_s - y_s, \text{time}\)

- **Focal Plane Position**
 - position \(x_f - y_f, \text{time}\)

- **Ionization Chambers**
 - energy loss, total energy

Physical Event:
\((x_s, y_s, x_f, y_f, \text{TOF}, \Delta E, E)\)
Entrance Position Detector: MCP

- Micro Channel Plate
- 8x10 cm² sensitive area ($\Omega=80$ msr)
- Timing resolution for TOF ~ 350 ps

- $d_{\text{TARGET}}=25$ cm
- C-foil 20mg/cm² thick
- $E_{\text{acc}}=30-40$ kV/m
- $B\approx120$ Gauss

- 3 signals
- Hole diameter 1 mm
- 1.1 mm FWHM
MCP is located here

Beam in
Focal Plane Position Detector

- **MWPPAC**
- Active area 1m x 13 cm
- 10 independent sections (horizontal plane)
- $\Delta X \sim 1\text{mm}, \Delta Y \sim 2\text{mm (FWHM)}$
- Stop signal for TOF

Filling gas: C_4H_{10}
Filling pressure: 7 mbar

10 x 3 signals (X_l, X_r, timing)
2 signals (Y_u, Y_d)

Lower efficiency for light nuclei (60-70 %)

1000 Wires
Entrance Window

to Ionization Chambers
Ionization Chambers

- **10x4 sections** (10x25 cm²)
- $\Delta E/E < 2\%$

Filling gas: CH_4 or CF_4
Working pressure: 20-100 mbar

40x2 signals
How to reconstruct the different incoming particles???

- **Optical elements + TOF** → **Magnetic rigidity:**
 \[
 B \rho = \frac{p}{q}
 \]

- **Energy loss in IC + residual energy** →
 \[
 \frac{m}{q} \approx B \rho \times TOF
 \]

Bethe-Bloch for non-relativistic heavy particles:

\[
\frac{dE}{dx} \propto \frac{M Z^2}{E}
\]

\[\downarrow\]

\[E \Delta E \approx M Z^2\]
DANTE
(Detector Array for multi Nucleon Transfer Ejectiles)

• Limited efficiency of the PRISMA-CLARA setup ⇒ No γ-γ coincidences.
• DANTE (heavy ion detector based on MCP) reveals the position interaction of the recoils ⇒ Doppler correction.
• DANTE placed at the grazing angle, has a high efficiency ⇒ γ-γ coincidences ⇒ No need of an extra GASP experiment to build up a level scheme.
Trigger conditions:

- Dante \(\text{AND} \) \(2\gamma \) (Sumbus =2)
- MCP \(\text{AND} \) \(\gamma \) (Sumbus =1)
- PPAC \(\text{AND} \) \(\gamma \) (Sumbus =1)
- PPAC \(\text{AND} \) MCP

OR

Master Trigger

There can be events WITHOUT CLARA
Or events of DANTE and CLARA and no PRISMA
References for Prisma-Clara set-up:

- NPA 701 (2002) 217c-221c A.M.Stefanini ➔ array description
- NIM A547(2005) 455-463 G.Montagnoli ➔ MCP detector
- NIM A551(2005) 364-374 S.Beghini ➔ Focal plane detectors
- Proceeding of 5th Italy-Japan Symposium (world scientific 2005) E.Fioretto + A.Gadea ➔ overview of PRISMA e CLARA
- LNL annual report 2000-2005 ➔
 - PRISMA-CLARA installation and description
 - First results
 - DANTE array description
- LNL web site www.lnl.infn.it ➔ research ➔ PRISMA-CLARA
What to check on-line....

• **rates** ➔ Note on the LOGBOOK:

 ✓ **PRISMA rates**: i.e. PPAC, PPAC-Ge, MCP, DANTE

 ✓ **CLOVER rates**: singles,

 ✓ **ACQ rate** (kBytes/s on tape)

• **On-line spectra monitoring**

 ✓ **PRISMA spectra**: use the on-line display “d”

 Important RAW spectra:

 • MCP X,Y and MATRIX

 • PPAC_X for each section

 • PPAC_Y

 • IC raw and E/dE for each section and summed

 • TOF spectra

 ✓ **CLARA spectra**: XmSpecview (usually on different pc)

 ➔ clear frequently RAW spectra

• **alarms** ➔ beam beeper + HV in PPAC
Numbers for our experiment

• **Beam:** $^{22}\text{Ne} @ \sim 150 \text{ MeV} \Rightarrow \text{highest possible, possibly 155 MeV}
• **Target:** - ^{238}U 0.5 mg/cm² evaporated on ^{12}C foils (0.2 mg/cm²) stack of 2
 - ^{208}Pb 0.5 mg/cm² evaporated on ^{12}C foils (0.2 mg/cm²) stack of 2
• **Positioning of Prisma:** $\sim 70^\circ$ (depending on target used $\theta_{\text{gra}}=68.5^\circ$ with U)
• $E_{\text{coulomb}}=112.4 \text{ MeV} \Rightarrow \sim 35\%$ above Coulomb barrier
• $E_{\text{exc}} \sim 5\text{-}10 \text{ MeV}$ (depending on specific channel)
• Expected population of isotopes (GRAZING code)

\begin{figure}
\centering
\includegraphics[width=\textwidth]{oxygen_isotope_diagram}
\end{figure}

\begin{table}
\centering
\begin{tabular}{|c|c|c|}
\hline
$\langle E_{\text{exc}} \rangle$ & U target & Pb target \\
\hline
^{20}Ne & 4.5 & 5.1 \\
^{22}Ne & 5.6 & 6.6 \\
^{20}O & 7.6 & 7.4 \\
\hline
\end{tabular}
\end{table}
Shift organization:

2 staffs, PRISMA (staff 1) and CLARA (staff 2)

- We will be included in staff 2
- Always 2 people on shift: 1 from staff1 and 1 from staff2
- Shifts schedule for staff2 on blackboard in GASP ACQ. Room
- Need to guarantee 1 person/shift
- 3 shifts a day, 8 hours each (0-8; 8-16; 16-24)
- Local people on call in nights and w-ends
- Try not to leave un-experienced people alone

Reminder:

(28th beam prep.) 29th Nov – 3rd Dec (finishing 4th morning)
LNL Legnaro (Pd)

You find this file in: http://lxmi.mi.infn.it/~benzoni/download/exp_LNL/pre Esp.ppt(pdf)